4

Potenciación, radicación y logaritmación de números naturales

GUÍA 04 DEL PERÍODO 1 - 2025 - PÁG. 1 DE 4

Saberes previos

¿Cuál número multiplicado por sí mismo tres veces es igual a 216?

Analiza

Observa los cubos de la Figura 1.6.

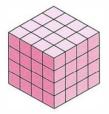


Figura 1.6

• ¿Cuántos cubos pequeños conforman cada figura?

Conoce

El primer cubo de la Figura 1.6 tiene dos cubos pequeños a lo largo, dos a lo alto y dos a lo ancho, es decir que en total tiene $2 \cdot 2 \cdot 2 = 8$ cubos.

El segundo cubo tiene tres cubos a lo largo, tres a lo alto y tres a lo ancho; en total, consta de $3 \cdot 3 \cdot 3 = 27$ cubos.

El tercer cubo tiene cuatro cubos a lo largo, cuatro a lo alto y cuatro a lo ancho; esto es, se conforma de $4 \cdot 4 \cdot 4 = 64$ cubos.

La **potenciación** de números naturales es una operación que permite calcular un producto de factores iguales en forma abreviada.

Los términos que intervienen en la potenciación son:

Base: cantidad que se toma como factor.

Exponente: indica la cantidad de veces que se toma la base como factor.

Potencia: resultado de multiplicar la base por sí misma la cantidad de veces que indica el exponente.

Ejemplo 1

En la situación inicial, el producto de factores iguales que muestra el número de cubos de la primera construcción es:

 $2 \cdot 2 \cdot 2 = 8$. Puede escribirse de forma abreviada como: $2^3 = 8$

En esta expresión, el número 2 es la base, el 3 es el exponente y el 8 es la potencia.

4.1 Potencia de un producto y de un cociente

La potencia de un producto es igual al producto de las potencias de los factores. La potencia de un cociente es igual al cociente entre la potencia del dividendo y la potencia del divisor.

Ejemplo 2

La expresión $(3 \cdot 4)^2$ equivale al producto $3^2 \cdot 4^2$.

Así,
$$(3 \cdot 4)^2 = 3^2 \cdot 4^2 = 9 \cdot 16 = 144$$
.

De forma análoga, $\left(\frac{4}{5}\right)^2 = \frac{4^2}{5^2} = \frac{16}{25}$

4.2 Producto de potencias de la misma base

El **producto de potencias de la misma base** es igual a una potencia con la misma base, y el exponente, igual a la suma de los exponentes de los factores.

Ejemplo 3

En el producto $3^5 \cdot 3^4 \cdot 3^3$, la base de cada uno de los factores es la misma, así que:

$$3^5 \cdot 3^4 \cdot 3^3 = 3^{(5+4+3)} = 3^{12}$$

GUÍA 04 DEL PERÍODO 1 - 2025 - PÁG. 2 DE 4

4.3 Cociente de potencias de la misma base

El **cociente de dos potencias** de la misma base es una potencia que tiene la misma base y el exponente es igual a la diferencia entre el exponente del dividendo y el exponente del divisor.

Ejemplo 4

Al aplicar el criterio para calcular potencias de la misma base sobre la operación $\frac{5^6}{5^3}$ se tiene que:

$$\frac{5^6}{5^3} = 5^{(6-3)} = 5^3 = 125$$

Ejemplo 5

Para resolver la operación $\frac{7^6 \cdot 7^2}{7^3 \cdot 7^4}$, se puede hacer uso primero del criterio del producto de potencias de la misma base y luego del cociente de potencias de la misma base, como se muestra a continuación.

$$\frac{7^6 \cdot 7^2}{7^3 \cdot 7^4} = \frac{7^{(6+2)}}{7^{(3+4)}} = \frac{7^8}{7^7} = 7^{(8-7)} = 7^1 = 7$$

4.4 Potencia de una potencia

La **potencia de una potencia** se halla dejando la base y multiplicando los exponentes.

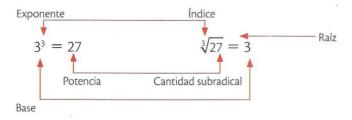
Ejemplo 6

Al aplicar el criterio de la potencia de una potencia para calcular $(3^4)^5$, se tiene que:

$$(3^4)^5 = 3^{4 \cdot 5} = 3^{20}$$

4.5 Radicación de un número natural

La **radicación** es la operación que consiste en buscar un número que, multiplicado por sí mismo cierta cantidad de veces, arroje un producto determinado. La radicación es una operación **inversa** de la **potenciación**.



Ejemplo7

Cada par de las siguientes expresiones son inversas.

$$4^3 = 64 \text{ y } \sqrt[3]{64} = 4$$
 $\sqrt[5]{32} = 2 \text{ y } 2^5 = 32$ $\sqrt[2]{81} = 9 \text{ y } 9^2 = 81$

Potenciación, radicación y logaritmación de números naturales

GUÍA 04 DEL PERÍODO 1 - 2025 - PÁG. 3 DE 4

4.6 Raíz de un número natural

De acuerdo con su índice, la raíz recibe nombres particulares: para índice 3, se denomina raíz cúbica; para índice 4, raíz cuarta; para índice 5, raíz quinta, y así sucesivamente (es decir, se nombra el número ordinal que corresponda).

Ejemplo 8

Observa cómo se leen estas expresiones.

- $\sqrt[6]{15625}$ = 5: Raíz sexta de 15625 es 5.
- $\sqrt[4]{1}$: Raíz novena de 1 es 1.
- $\sqrt[3]{49} = 7$: Raíz cuadrada de 49 es 7. Se acostumbra a omitir el índice en la raíz cuadrada. Es decir, $\sqrt[3]{49} = \sqrt{49}$.

A continuación se presentan algunas **propiedades** de la rad**icación** en las que *a, b, n y m* son números naturales.

$$\sqrt[n]{a \cdot b} = \sqrt[n]{a} \cdot \sqrt[n]{b}$$

$$\sqrt[n]{\frac{a}{b}} = \sqrt[n]{\frac{a}{\sqrt[n]{b}}}$$

$$\sqrt[n]{\sqrt[n]{a}} = \sqrt[n]{\sqrt[n]{a}}$$

Ejemplo 9

En las siguientes igualdades se usan las propiedades de la radicación.

$$\sqrt{4\times9} = \sqrt{4}\times\sqrt{9} = 2\cdot3 = 6$$

$$\sqrt[3]{\frac{64}{8}} = \frac{\sqrt[3]{64}}{\sqrt[3]{8}} = \frac{4}{2} = 2$$

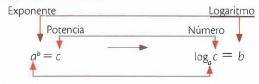
$$\sqrt[3]{\sqrt{4096}} = \sqrt[2\times3]{4096} = \sqrt[6]{4096} = 4$$

Observa que $5 = \sqrt{25} = \sqrt{16 + 9} \neq \sqrt{16} + \sqrt{9} = 4 + 3 = 7$ En general, $\sqrt[n]{a + b} \neq \sqrt[n]{a} + \sqrt[n]{b}$.

4.7 Logaritmo de un número natural

El **logaritmo** de un número x, en una base dada a, es el exponente y al cual se debe elevar la base para obtener el número. El logaritmo se denota simplemente con log. Así, si $\log_a x = y$, entonces $a^y = x$.

La logaritmación y la potenciación son operaciones inversas y se relacionan como se muestra a continuación.



Base de la potencia

Base del logaritmo

Ejemplo 10

Observa cómo está relacionada cada pareja de expresiones.

$$\log_2 16 = 4 \text{ y } 2^4 = 16$$
 $\log_5 125 = 3 \text{ y } 5^3 = 125$ $\log_7 49 = 2 \text{ y } 7^2 = 49$

GUÍA 04 DEL PERÍODO 1 - 2025 - PÁG. 4 DE 4

Actividades de aprendizaje

Eiercitación

- 1 Escribe los siguientes productos en forma de potencia y determina su valor.
 - $a. 4^3 \cdot 4^2 \cdot 4^1$
 - b. $2^2 \cdot 2 \cdot 2^4 \cdot 2^3$
 - c 53.52.50.5
 - $d.6^2 \cdot 6^2 \cdot 6^2 \cdot 6^2$
- Expresa las siguientes multiplicaciones en forma de producto de la misma base.
 - a. $9 \cdot 3^2 \cdot 3^3 \cdot 27$
 - b. $16 \cdot 2^2 \cdot 4 \cdot 2^0$
 - $c. 5 \cdot 25 \cdot 125 \cdot 5^3 \cdot 5^2$
- 3 Escribe los logaritmos que se deducen de las siguientes igualdades.

 - **a.** $9^3 = 729$ **b.** $5^2 = 25$
 - c. $3^7 = 2 187$ d. $6^2 = 36$

Razonamiento

Resuelve y explica las propiedades de la multiplicación y de la potenciación que usaste en cada ejercicio.

a.
$$\frac{3^5 \cdot (2 \cdot 9)^5 \cdot (2^2)^4 \cdot 3^2}{(3 \cdot 9)^2 \cdot 9^3}$$

b.
$$\frac{4^4 \cdot 6^4 \cdot 7^2 \cdot 5^3}{7 \cdot 3^2}$$

- c. $\frac{(3^2)^5 \cdot (3^2 \cdot 4^2)^3 \cdot (11^7)^2 \cdot 2^4}{(5^3 \cdot 2^2)^2 \cdot 11^3}$
- 5 Completa en tu cuaderno.
 - a. $\sqrt[3]{1000} =$
- b. $\sqrt[3]{125} =$
- c. $\sqrt{16} =$
- Completa.
 - a. log₆ 216 = porque:
 - b. $\log_{10} 8 = 100$ porque:

- 3 Lee y soluciona.
- a. Si n es un número natural para el cual n^2 está entre 120 y 130, ; cuál es el valor de n?
 - b. Halla dos números menores que 100 que tengan raíz cuadrada exacta y cuya suma también la tenga.
 - c. Si ABC y DEF representan números de tres dígitos de tal manera que A = D, $B^2 = E$ y $C^2 = F$, ¿cuál es el mayor valor que puede tener el número DEF?

Resolución de problemas

- 8 En una bodega hay una pila con ocho cajas de largo,
- ocho de ancho y ocho de alto. Si cada caja contiene ocho balones de fútbol que se venden a \$ 15000 cada uno, ¿cuánto cuestan todos los balones almacenados?

Evaluación del aprendizaje

- Se quieren distribuir los 529 estudiantes de un co-
- legio formando un cuadrado. ¿Cuántos estudiantes habrá en cada lado del cuadrado?
- ii) El sonido se mide en una escala logarítmica usan-
- do una unidad que se llama decibel. Un decibel (d) se define así: $d = 10\log\left(\frac{P}{P_0}\right)$, donde P es la potencia o intensidad del sonido y Po es el sonido más débil que puede captar el humano.
 - Demuestra que si $P = 2P_{o}$, el nivel de sensación sonora aumenta en 3,0 decibelios. (Considera log2 = 0.3).

Estilos de vida saludable

Para saber si tienes una alimentación saludable se calcula el índice de masa corporal (IMC), el cual no puede ser superior a 25. Cálcula tu IMC con la siguiente formula:

$$IMC = \frac{\text{Tu peso en kg}}{(\text{Tu estatura en m})^2}$$